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Baylor WMCS Program

A Wireless and Microwave Circuits and Systems

A Wireless and Microwave Education and Research in a
Caring, Christian Environment

A Launched in 2008.
A For more information, go to http://www.wmcslab.org.
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http://www.wmcslab.org/

Spectral Constraints

A Radar criteria imposed in the Radar Spectrum
Evaluation Criteria (RSEC), which are

determined by the National Telecommunications
and Information Administration (NTIA).

A Less available spectrum will mean tighter

requirements.

A Spectral mask outlines the required confines of
the signal: T
*Reprinted from J. de Graaf, H. Faust, J. Alatishe, — - I A
and S. Talapatra, fiGenerat . Ul

Transmitted Radar Waveform::

Radar, 2006, pp. 76-83
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Sources of Spreading

AThirdor der nonlinearity (f
di stortiono) I n the ampl
band components

A Assume a third-order nonlinear system:
(t) =a+by, (t) +cv, " () +dv,’(t)

OUt

A Stimulate with a two-tone input signal:
Vv, (t) = Acosmt + Bcosums,t
V_,(t) =a+b(Acosmt + Bcosust) +c(A® cos” wt + B® cos’ wiyt + 2ABcosw;t cosust)® +

d(A® cos’ wit €¥A’Bcos’ wjt cosust + AB? @ B® cos’ wst)

Third-Order Intermodulation Terms T ‘ | T ©

2(!)1-(5)3 (V)] @7 2(!)3-(01
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Intermodulation Results

A For a radar bandpass signal (e.g. a chirp),
each frequency at which the signal is
nonzero represents a

A In general, all pairs of tones intermodulate:

I In-band distortion

I Out-of-band distortion (ns|
A To minimize unwanted sidelobes:

I Linearize the transmitter circuitry.

I Optimize the input waveform.




Linearity vs. Efficiency

A Efficiency increases with output power.
I GaAs MESFET power amplifier example shown below.

A Linearity decreases with increasing output power for
amplitude modulated signals.
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Summary of Present
Baylor/NRL Research Effort

A Create a useful design approach for joint
optimization of power-amplifier circuitry
and waveforms.

A Two-fold objective:

I Spectral Conformity
I Power Efficiency

A Possible Long-Term Outgrowth: A real-
time, reconfigurable radar transmitter
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Future Radar Transmitter

Signal Generator

FPGA

/ Controller \\

>

Tunable Load Network

Spectrum
Analyzer

(i.e. tunable MEMS

N

capacitors or
varactors)

.

Power
Sensor

All functionality implemented on-chip and
reconfiurablin real time.
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| oad-Pull Measurements

A Load-pull: varying the load impedance (around the
Smith Chart) to find the load impedance producing
maximum power, maximum efficiency, minimum ACPR,

etc.
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Baylor Waveform and Load
Optimization Lab Test Platform

MATLAB

i

Agilent
Vector Signal

(Generator
(Waveforms)

*C. Baylis et al.

!

Maury

ATS Load-
Pull Software
and Tuners

i

Spectrum
Analvzer
(ACPE and
Distortion)

!

Power Meter
(Power PAE

Measurements)




Test Platform Configuration

Signal Generator
(AgilentN5182A)

OC Bias
[AgilentE36474)

Automated Impedance
Tuner (Input)

Legend

i

I

> ouT —>

Automated Impedance
Tuner (Output)

SpectrumAnalyzer
(Agilent ESA44078)

10 dB Attenuator

t

i

o

—  RF Path
Other
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ATS Tuner Controller

-

6 dB Power Splitter

Power Meter
(ApilentN19114)




Baylor Optimization Test Platform
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Intelligent Search for PAE/ACPR

A Steepest ascent algorithm
A Maximum PAE found first.

A ACPR point found from another steepest
ascent search starting at the maximum
PAE location.

A The ACPR search will be along the Pareto
tradeoff line and can be stopped when
ACPR is low enough.
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Intelligent Search for PAE/ACPR

PAE Intelligent Algorithm Standard Load-Pull:
(Red = PAE, Blue = ACPR)
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Intelligent Search for PAE/ACPR

ACPR Intelligent Algorithm Standard Load-Pull:
(Red = PAE, Blue = ACPR)

25 measurements




Multiple Starting Points

18 PAE/25 ACPR meas.
3 @ | 1:0.9<90

)
| -

PAE Data Analysis
Resistance Reactance
Mean: 0.19234548 0.0783024
| r Standard Deviation: 0.005019676  0.00069841

- —

=27 PAE/33 ACPR meas. ACPR Data Analysis
Resistance Reactance
Mean: 0.028303189 -0.05823
Standard Deviation: 0.002578556  0.00592521

21 PAE/33 ACPR meas. 17 PAE/31 ACPR meas.
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PAE Value
33.86927333
0.025045069

ACPR Value
-52.011245
0.045216585




Chirp Waveform Optimization

A Objective: Create a piecewise linear chirp
optimized for spectral confinement.

A Two Optimization Goals:
I Maximize in-band energy.
I In-band flatness should be as flat as possible.
I Spectral mask requirements must be met.

* M. Mol dovan, C. Bayl i s, M. Wicks, J.
Using Piecewise Linear Approach, o I nte
Conference, Kauai, Hawaii, January 2012.
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